
NAG Fortran Library Routine Document

H02CBF

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details.

Note: This routine uses optional parameters to define choices in the problem specification and in the
details of the algorithm. If you wish to use default settings for all of the optional parameters, you need
only read Section 1 to Section 9 of this document. Refer to the additional Section 10, Section 11 and
Section 12 for a detailed description of the algorithm, the specification of the optional parameters and a
description of the monitoring information produced by the routine.

1 Purpose

H02CBF solves general quadratic programming problems with integer constraints on the variables. It is
not intended for large sparse problems.

2 Specification

SUBROUTINE H02CBF(N, NCLIN, A, LDA, BL, BU, CVEC, H, LDH, QPHESS,
1 INTVAR, LINTVR, MDEPTH, ISTATE, XS, OBJ, AX, CLAMDA,
2 STRTGY, IWRK, LIWRK, WRK, LWRK, MONIT, IFAIL)

INTEGER N, NCLIN, LDA, LDH, INTVAR(LINTVR), LINTVR, MDEPTH,
1 ISTATE(N+NCLIN), STRTGY, IWRK(LIWRK), LIWRK, LWRK,
2 IFAIL
real A(LDA,*), BL(N+NCLIN), BU(N+NCLIN), CVEC(*), H(LDH,*),

1 XS(N+NCLIN), OBJ, AX(*), CLAMDA(N+NCLIN), WRK(LWRK)
EXTERNAL QPHESS, MONIT

3 Description

H02CBF uses a ‘Branch and Bound’ algorithm in conjunction with E04NFF=E04NFA to try and determine
integer solutions to a general quadratic programming problem. Only when the problem is linear and the
matrix H is positive definite can the technique be guaranteed to work; but often useful results can be
obtained for a wider class of problems.

Branch and bound consists firstly of obtaining a solution without any of the variables

x ¼ ðx1; x2; . . . ; xnÞT constrained to be integer. Suppose x1 ought to be integer, but at the optimal
value just computed x1 ¼ 2:4. A constraint x1 � 2 is added to the system and the second problem solved.
A constraint x1 � 3 gives rise to a third sub-problem. In a similar manner a whole series of sub-problems
may be generated, corresponding to integer constraints on the variables. The sub-problems are all solved
using E04NFF=E04NFA.

In practice the routine tries to compute an integer solution as quickly as possible using a depth-first
approach, since this helps determine a realistic cut-off value. If we have a cut-off value, say the value of
the function at this first integer solution, and any sub-problem, W say, has a solution value greater than
this cut-off value, then subsequent sub-problems of W must have solutions greater than the value of the
solution at W and therefore need not be computed. Thus a knowledge of a good cut-off value can result in
fewer sub-problems being solved and thus speed up the operation of the routine. (See the description of
MONIT in Section 5 for details of how users can supply their own cut-off value.)

4 References

Gill P E, Hammarling S, Murray W, Saunders M A and Wright M H (1986) User’s guide for LSSOL
(Version 1.0) Report SOL 86-1 Department of Operations Research, Stanford University

Gill P E and Murray W (1978) Numerically stable methods for quadratic programming Math.
Programming 14 349–372

H – Operations Research H02CBF

[NP3546/20A] H02CBF.1

Gill P E, Murray W, Saunders M A and Wright M H (1984) Procedures for optimization problems with a
mixture of bounds and general linear constraints ACM Trans. Math. Software 10 282–298

Gill P E, Murray W, Saunders M A and Wright M H (1989) A practical anti-cycling procedure for linearly
constrained optimization Math. Programming 45 437–474

Gill P E, Murray W, Saunders M A and Wright M H (1991) Inertia-controlling methods for general
quadratic programming SIAM Rev. 33 1–36

Pardalos P M and Schnitger G (1988) Checking local optimality in constrained quadratic programming is
NP-hard Operations Research Letters 7 33–35

Gill P E, Murray W and Wright M H (1981) Practical Optimization Academic Press

5 Parameters

1: N – INTEGER Input

On entry: n, the number of variables.

Constraint: N > 0.

2: NCLIN – INTEGER Input

On entry: mL, the number of general linear constraints.

Constraint: NCLIN � 0.

3: A(LDA,*) – real array Input

Note: the second dimension of the array A must be at least N when NCLIN > 0, and at least 1
when NCLIN ¼ 0.

On entry: the ith row of A must contain the coefficients of the ith general linear constraint, for
i ¼ 1; 2; . . . ;mL.

If NCLIN ¼ 0 then the array A is not referenced.

4: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which H02CBF is
called.

Constraint: LDA � maxð1;NCLINÞ.

5: BL(N+NCLIN) – real array Input
6: BU(N+NCLIN) – real array Input

On entry: BL must contain the lower bounds and BU the upper bounds, for all the constraints in the
following order. The first n elements of each array must contain the bounds on the variables, and
the next mL elements the bounds for the general linear constraints (if any). To specify a non-
existent lower bound (i.e., lj ¼ �1), set BLðjÞ � �bigbnd, and to specify a non-existent upper

bound (i.e., uj ¼ þ1), set BUðjÞ � bigbnd; the default value of bigbnd is 1020, but this may be

changed by the optional parameter Infinite Bound Size (see Section 11.2). To specify the jth
constraint as an equality, set BLðjÞ ¼ BUðjÞ ¼ �, say, where j�j < bigbnd.

Constraints:

BLðjÞ � BUðjÞ, for j ¼ 1; 2; . . . ;Nþ NCLIN,
j�j < bigbnd when BLðjÞ ¼ BUðjÞ ¼ �.

7: CVEC(*) – real array Input

Note: the dimension of the array CVEC must be at least N when the problem is of type LP, QP2
(the default) or QP4, and at least 1 otherwise.

H02CBF NAG Fortran Library Manual

H02CBF.2 [NP3546/20A]

On entry: the coefficients of the explicit linear term of the objective function when the problem is of
type LP, QP2 (the default) and QP4.

If the problem is of type FP, QP1, or QP3, CVEC is not referenced.

8: H(LDH,*) – real array Input

Note: the second dimension of the array H must be at least N if it is to be used to store H explicitly,
and at least 1 otherwise.

On entry: H may be used to store the quadratic term H of the QP objective function if desired. In
some cases, the user need not use H to store H explicitly (see the specification of subroutine
QPHESS below). The elements of H are referenced only by subroutine QPHESS. The number of
rows of H is denoted by m, whose default value is n. (The optional parameter Hessian Rows may
be used to specify a value of m < n; see Section 11.2.)

If the default version of QPHESS is used and the problem is of type QP1 or QP2 (the default), the
first m rows and columns of H must contain the leading m by m rows and columns of the
symmetric Hessian matrix H. Only the diagonal and upper triangular elements of the leading m
rows and columns of H are referenced. The remaining elements need not be assigned.

If the default version of QPHESS is used and the problem is of type QP3 or QP4, the first m rows

of H must contain an m by n upper trapezoidal factor of the symmetric Hessian matrix HTH. The
factor need not be of full rank, i.e., some of the diagonal elements may be zero. However, as a
general rule, the larger the dimension of the leading non-singular sub-matrix of H, the fewer
iterations will be required. Elements outside the upper trapezoidal part of the first m rows of H
need not be assigned.

If a non-default version of QPHESS is supplied, then in some cases it may be desirable to use a
one-dimensional array to transmit data to QPHESS. (This is illustrated in the example program in
Section 9 of the document for H02CCF.) H is then declared as a vector with dimension (LDH),
where LDH � N� ðNþ 1Þ=2.

In other situations, it may be desirable to compute Hx or HTHx without accessing H – for

example, if H or HTH is sparse or has special structure. The parameters H and LDH may then refer
to any convenient array.

If the problem is of type FP or LP, H is not referenced.

9: LDH – INTEGER Input

On entry: the first dimension of the array H as declared in the (sub)program from which H02CBF is
called.

Constraints:

if the problem is of type QP1, QP2 (the default), QP3 or QP4, LDH � N or at least the value
of the optional parameter Hessian Rows (default value ¼ n; see Section 11.2).
if the problem is of type FP or LP, LDH � 1.

10: QPHESS – SUBROUTINE, supplied by the NAG Fortran Library or the user. External Procedure

In general, the user need not provide a version of QPHESS, because a ‘default’ subroutine with
name E04NFU is included in the Library (NFUE04 in some implementations: see the Users’ Note
for your implementation for details). However, the algorithm of H02CBF requires only the product

of H or HTH and a vector x; and in some cases the user may obtain increased efficiency by
providing a version of QPHESS that avoids the need to define the elements of the matrices H or

HTH explicitly. QPHESS is not referenced if the problem is of type FP or LP, in which case
QPHESS may be the routine E04NFU (NFUE04 in some implementations).

Its specification is:

H – Operations Research H02CBF

[NP3546/20A] H02CBF.3

SUBROUTINE QPHESS(N, JTHCOL, H, LDH, X, HX)

INTEGER N, JTHCOL, LDH
real H(LDH,*), X(N), HX(N)

1: N – INTEGER Input

On entry: this is the same parameter N as supplied to H02CBF (see above).

2: JTHCOL – INTEGER Input

On entry: JTHCOL specifies whether or not the vector x is a column of the identity
matrix. If JTHCOL ¼ j > 0, then the vector x is the jth column of the identity matrix,

and hence Hx or HTHx is the jth column of H or HTH, respectively, which may in some
cases require very little computation and QPHESS may be coded to take advantage of this.
However special code is not necessary because x is always stored explicitly in the array X.
If JTHCOL ¼ 0, x has no special form.

3: H(LDH,*) – real array Input

On entry: this is the same parameter H as supplied to H02CBF (see above).

4: LDH – INTEGER Input

On entry: this is the same parameter LDH as supplied to H02CBF (see above).

5: X(N) – real array Input

On entry: the vector x.

6: HX(N) – real array Output

On exit: the product Hx if the problem is of type QP1 or QP2 (the default), or the product

HTHx if the problem is of type QP3 or QP4.

QPHESS must be declared as EXTERNAL in the (sub)program from which H02CBF is called.
Parameters denoted as Input must not be changed by this procedure.

11: INTVAR(LINTVR) – INTEGER array Input

On entry: INTVARðiÞ must contain the index of the solution vector x which is required to be
integer. For example, if x1 and x3 are constrained to take integer values then INTVARð1Þ might be
set to 1 and INTVARð2Þ to 3. The order in which the indices are specified is important, since this
determines the order in which the sub-problems are generated. As a rule-of-thumb, the important
variables should always be specified first. Thus, in the above example, if x3 relates to a more
important quantity than x1, then it might be advantageous to set INTVARð1Þ ¼ 3 and
INTVARð2Þ ¼ 1. If k is the smallest integer such that INTVARðkÞ is less than or equal to zero
then H02CBF assumes that k� 1 variables are constrained to be integer; components
INTVARðkþ 1Þ, . . ., INTVAR(LINTVR) are not referenced.

12: LINTVR – INTEGER Input

On entry: the dimension of the array INTVAR as declared in the (sub)program from which H02CBF
is called. Often LINTVR is the number of variables that are constrained to be integer.

Constraint: LINTVR > 0.

13: MDEPTH – INTEGER Input

On entry: the maximum depth (i.e., number of extra constraints) that H02CBF may insert before
admitting failure.

Suggested value: MDEPTH ¼ 3� N=2.

Constraint: MDEPTH � 1.

H02CBF NAG Fortran Library Manual

H02CBF.4 [NP3546/20A]

14: ISTATE(N+NCLIN) – INTEGER array Input/Output

On entry: ISTATE need not be set if the (default) Cold Start option is used.

If the Warm Start option has been chosen (see Section 11.2), ISTATE specifies the desired status of
the constraints at the start of the feasibility phase. More precisely, the first n elements of ISTATE
refer to the upper and lower bounds on the variables, and the next mL elements refer to the general
linear constraints (if any). Possible values for ISTATEðjÞ are as follows:

ISTATEðjÞ Meaning
0 The corresponding constraint should not be in the initial working set.
1 The constraint should be in the initial working set at its lower bound.
2 The constraint should be in the initial working set at its upper bound.
3 The constraint should be in the initial working set as an equality. This value must not

be specified unless BLðjÞ ¼ BUðjÞ.
The values �2, �1 and 4 are also acceptable but will be reset to zero by the routine. If H02CBF
has been called previously with the same values of N and NCLIN, ISTATE already contains
satisfactory information. (See also the description of the optional parameter Warm Start in
Section 11.2.) The routine also adjusts (if necessary) the values supplied in XS to be consistent
with ISTATE.

Constraint: �2 � ISTATEðjÞ � 4, for j ¼ 1; 2; . . . ;Nþ NCLIN.

On exit: the status of the constraints in the working set at the point returned in XS. The significance
of each possible value of ISTATEðjÞ is as follows:

ISTATEðjÞ Meaning
�2 The constraint violates its lower bound by more than the feasibility tolerance.
�1 The constraint violates its upper bound by more than the feasibility tolerance.
0 The constraint is satisfied to within the feasibility tolerance, but is not in the working

set.
1 This inequality constraint is included in the working set at its lower bound.
2 This inequality constraint is included in the working set at its upper bound.
3 This constraint is included in the working set as an equality. This value of ISTATE

can occur only when BLðjÞ ¼ BUðjÞ.
4 This corresponds to optimality being declared with XSðjÞ being temporarily fixed at

its current value. This value of ISTATE can occur only when IFAIL ¼ 1 on exit.

15: XS(N+NCLIN) – real array Input/Output

On entry: an initial estimate of the solution.

On exit: the point at which H02CBF terminated. If IFAIL ¼ 0, 1 or 3, XS contains an estimate of
the solution.

16: OBJ – real Output

On exit: the value of the objective function at x if x is feasible, or the sum of infeasibilities at x
otherwise. If the problem is of type FP and x is feasible, OBJ is set to zero.

17: AX(*) – real array Output

Note: the dimension of the array AX must be at least maxð1;NCLINÞ.
On exit: the final values of the linear constraints Ax.

If NCLIN ¼ 0 then AX is not referenced.

18: CLAMDA(N+NCLIN) – real array Output

On exit: the values of the Lagrange multipliers for each constraint with respect to the current
working set. The first n elements contain the multipliers for the bound constraints on the variables,
and the next mL elements contain the multipliers for the general linear constraints (if any). If
ISTATEðjÞ ¼ 0 (i.e., constraint j is not in the working set), CLAMDAðjÞ is zero. If x is optimal,

H – Operations Research H02CBF

[NP3546/20A] H02CBF.5

CLAMDAðjÞ should be non-negative if ISTATEðjÞ ¼ 1, non-positive if ISTATEðjÞ ¼ 2 and zero if
ISTATEðjÞ ¼ 4.

19: STRTGY – INTEGER Input

On entry: STRTGY determines a branching strategy to be used throughout the computation, as
follows:

STRTGY Meaning
0 Always left branch first i.e., impose an upper bound constraint on the variable first.
1 Always right branch first i.e., impose a lower bound constraint on the variable first.
2 Branch towards the nearest integer i.e., if xk ¼ 2:4 then impose an upper bound

constraint xk � 2, whereas if xk ¼ 2:6 then impose the lower bound constraint
xk � 3:0.

3 A random choice is made between a left-hand and a right-hand branch.

Constraint: STRTGY ¼ 0, 1, 2 or 3.

20: IWRK(LIWRK) – INTEGER array Workspace
21: LIWRK – INTEGER Input

On entry: the dimension of the array IWRK as declared in the (sub)program from which H02CBF is
called.

Constraint: LIWRK � 2� Nþ 3þ 2�MDEPTH.

22: WRK(LWRK) – real array Workspace
23: LWRK – INTEGER Input

On entry: the dimension of the array WRK as declared in the (sub)program from which H02CBF is
called.

Constraints:

For problems QP2 (the default) and QP4,

LWRK � 2� N2 þ 8� Nþ 5� NCLINþ 4�MDEPTH if NCLIN > 0,

LWRK � N2 þ 9� Nþ 4�MDEPTH if NCLIN ¼ 0.

For problems QP1 and QP3,

LWRK � 2� N2 þ 8� Nþ 5� NCLINþ 4�MDEPTH if NCLIN > 0,

LWRK � N2 þ 8� Nþ 4�MDEPTH if NCLIN ¼ 0.

If the problem is of type LP,

LWRK � 9� Nþ 1þ 4�MDEPTH if NCLIN ¼ 0,

LWRK � 2� N2 þ 9� Nþ 5� NCLINþ 4�MDEPTH if NCLIN � N,

LWRK � 2� ðNCLINþ 1Þ2 þ 9� Nþ 5� NCLINþ 4�MDEPTH otherwise.

If the problem is of type FP,

LWRK � 8� Nþ 1þ 4�MDEPTH, if NCLIN ¼ 0,

LWRK � 2� N2 þ 8� Nþ 5� NCLINþ 4�MDEPTH if NCLIN � N,

LWRK � 2� ðNCLINþ 1Þ2 þ 8� Nþ 5� NCLINþ 4�MDEPTH otherwise.

24: MONIT – SUBROUTINE, supplied by the NAG Fortran Library or the user. External Procedure

This routine may be used to print out intermediate output and to affect the course of the
computation. Specifically, it allows the user to specify a realistic value for the cut-off value (see
Section 3) and to terminate the algorithm. If the user does not require any intermediate output, has
no estimate of the cut-off value and requires an exhaustive tree search then MONIT may be the
dummy routine H02CBU (CBUH02 in some implementations).

Its specification is:

H02CBF NAG Fortran Library Manual

H02CBF.6 [NP3546/20A]

SUBROUTINE MONIT(INTFND, NODES, DEPTH, OBJ, X, BSTVAL, BSTSOL, BL,
1 BU, N, HALT, COUNT)

INTEGER INTFND, NODES, DEPTH, N, COUNT
real OBJ, X(N), BSTVAL, BSTSOL(N), BL(N), BU(N)
LOGICAL HALT

1: INTFND – INTEGER Input

On entry: specifies the number of integer solutions obtained so far.

2: NODES – INTEGER Input

On entry: specifies the number of nodes (sub-problems) solved so far.

3: DEPTH – INTEGER Input

On entry: specifies the depth in the tree of sub-problems the algorithm has now reached.

4: OBJ – real Input

On entry: specifies the value of the objective function of the end of the latest sub-problem.

5: X(N) – real array Input

On entry: specifies the values of the independent variables at the end of the latest sub-
problem.

6: BSTVAL – real Input/Output

On entry: normally specifies the value of the best integer solution found so far.

On exit: may be set a cut-off value by the sophisticated user as follows. Before an integer
solution has been found BSTVAL will be set by H02CBF to the largest machine
representable number (see X02ALF). If the user knows that the solution being sought is a
much smaller number, then BSTVAL may be set to this number as a cut-off value (see
Section 3). Beware of setting BSTVAL too small, since then no integer solutions will be
discovered. Also make sure that BSTVAL is set using a statement of the form

IF (INTFND.EQ.0) BSTVAL ¼ cut-off value

on entry to MONIT. This statement will not prevent the normal operation of the algorithm
when subsequent integer solutions are found. It would be a grievous mistake to
unconditionally set BSTVAL and if you have any doubts whatsoever about the correct use
of this parameter then you are strongly recommended to leave it unchanged.

7: BSTSOL(N) – real array Input

On entry: specifies the solution vector which gives rise to the best integer solution value
so far discovered.

8: BL(N) – real array Input

On entry: BLðiÞ specifies the current lower bounds on the variable xi.

9: BU(N) – real array Input

On entry: BUðiÞ specifies the current upper bounds on the variable xi.

10: N – INTEGER Input

On entry: specifies the number of variables.

11: HALT – LOGICAL Input/Output

On entry: HALT will have the value .FALSE..

H – Operations Research H02CBF

[NP3546/20A] H02CBF.7

On exit: by setting HALT to .TRUE., the user may terminate the algorithm prematurely.
This facility may be useful if the user is content with any integer solution, or with any
integer solution that fits certain criteria. Under these circumstances setting
HALT ¼ :TRUE: can save considerable unnecessary computation.

12: COUNT – INTEGER Input

On entry: specifies the number of integer solutions found so far.

MONIT must be declared as EXTERNAL in the (sub)program from which H02CBF is called.
Parameters denoted as Input must not be changed by this procedure.

25: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. Users who are unfamiliar with this parameter should
refer to Chapter P01 for details.

On exit: IFAIL ¼ 0 unless the routine detects an error (see Section 6).

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then the
value 1 is recommended. Otherwise, because for this routine the values of the output parameters
may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the value �1 or 1
is used it is essential to test the value of IFAIL on exit.

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit (as
defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ �1

Algorithm terminated at user request (HALT ¼ :TRUE:).

IFAIL ¼ 1

Input parameter error immediately detected.

IFAIL ¼ 2

No integer solution found. (Check that BSTVAL has not been set too small.)

IFAIL ¼ 3

MDEPTH is too small. Increase the value of MDEPTH and re-enter H02CBF.

IFAIL ¼ 4

The basic problem (without integer constraints) is unbounded.

IFAIL ¼ 5

The basic problem is infeasible.

IFAIL ¼ 6

The basic problem requires too many iterations.

IFAIL ¼ 7

The basic problem has a reduced Hessian which exceeds its assigned dimension.

H02CBF NAG Fortran Library Manual

H02CBF.8 [NP3546/20A]

IFAIL ¼ 8

The basic problem has an invalid parameter setting.

IFAIL ¼ 9

The basic problem, as defined, is not standard.

IFAIL ¼ 10

LIWRK is too small.

IFAIL ¼ 11

LWRK is too small.

IFAIL ¼ 12

An internal error has occurred within the routine. Please contact NAG with details of the call to
H02CBF.

7 Accuracy

The routine implements a numerically stable active set strategy and returns solutions that are as accurate as
the condition of the problem warrants on the machine.

8 Further Comments

This section contains some comments on scaling and a description of the printed output.

8.1 Scaling

Sensible scaling of the problem is likely to reduce the number of iterations required and make the problem
less sensitive to perturbations in the data, thus improving the condition of the problem. In the absence of
better information it is usually sensible to make the Euclidean lengths of each constraint of comparable
magnitude. See Chapter E04 and Gill et al. (1981) for further information and advice.

8.2 Description of the Printed Output

This section describes the (default) intermediate printout and final printout produced by H02CBF. The
intermediate printout is a subset of the monitoring information produced by the routine at every iteration
(see Section 12). The level of printed output can be controlled by the user (see the description of the
optional parameter Print Level in Section 11.2). Note that the intermediate printout and final printout are
produced only if Print Level � 10 (the default).

The following line of summary output (< 80 characters) is produced at every iteration. In all cases, the
values of the quantities printed are those in effect on completion of the given iteration.

Itn is the iteration count.

Step is the step taken along the computed search direction. If a constraint is added during
the current iteration, Step will be the step to the nearest constraint. When the
problem is of type LP, the step can be greater than one during the optimality phase.

Ninf is the number of violated constraints (infeasibilities). This will be zero during the
optimality phase.

Sinf/Objective is the value of the current objective function. If x is not feasible, Sinf gives a
weighted sum of the magnitudes of constraint violations. If x is feasible,
Objective is the value of the objective function. The output line for the final
iteration of the feasibility phase (i.e., the first iteration for which Ninf is zero) will
give the value of the true objective at the first feasible point.

H – Operations Research H02CBF

[NP3546/20A] H02CBF.9

During the optimality phase, the value of the objective function will be non-
increasing. During the feasibility phase, the number of constraint infeasibilities will
not increase until either a feasible point is found, or the optimality of the multipliers
implies that no feasible point exists. Once optimal multipliers are obtained, the
number of infeasibilities can increase, but the sum of infeasibilities will either
remain constant or be reduced until the minimum sum of infeasibilities is found.

Norm Gz is kZT
RgFRk, the Euclidean norm of the reduced gradient with respect to ZR (see

Section 10.2 and Section 10.4). During the optimality phase, this norm will be
approximately zero after a unit step.

The final printout includes a listing of the status of every variable and constraint.

The following describes the printout for each variable. A full stop (.) is printed for any numerical value
that is zero.

A key is sometimes printed before State to give some additional information about the state of a variable.

Varbl gives the name (V) and index j, for j ¼ 1; 2; . . . ; n of the variable.

State gives the state of the variable (FR if neither bound is in the working set, EQ if a
fixed variable, LL if on its lower bound, UL if on its upper bound, TF if temporarily
fixed at its current value). If Value lies outside the upper or lower bounds by more

than the Feasibility Tolerance (default value ¼
ffiffi
�

p
, where � is the machine

precision; see Section), State will be ++ or respectively.

A Alternative optimum possible. The variable is active at one of its bounds, but
its Lagrange multiplier is essentially zero. This means that if the variable
were allowed to start moving away from its bound, there would be no change
to the objective function. The values of the other free variables might change,
giving a genuine alternative solution. However, if there are any degenerate
variables (labelled D), the actual change might prove to be zero, since one of
them could encounter a bound immediately. In either case the values of the
Lagrange multipliers might also change.

D Degenerate. The variable is free, but it is equal to (or very close to) one of its
bounds.

I Infeasible. The variable is currently violating one of its bounds by more than
the Feasibility Tolerance.

Value is the value of the variable at the final iterate.

Lower Bound is the lower bound specified for the variable. None indicates that BLðjÞ � �bigbnd.

Upper Bound is the upper bound specified for the variable. None indicates that BUðjÞ � bigbnd.

Slack is the difference between the variable Value and the nearer of its (finite) bounds
BLðjÞ and BUðjÞ. A blank entry indicates that the associated variable is not
bounded (i.e., BLðjÞ � �bigbnd and BUðjÞ � bigbnd).

The meaning of the printout for general constraints is the same as that given above for variables, with
‘variable’ replaced by ‘constraint’, BLðjÞ and BUðjÞ are replaced by BLðnþ jÞ and BUðnþ jÞ
respectively, and with the following change in the heading.

L Con gives the name (L) and index j, for j ¼ 1; 2; . . . ;m of the constraint.

Note that movement off a constraint (as opposed to a variable moving away from its bound) can be
interpreted as allowing the entry in the Slack column to become positive.

Numerical values are output with a fixed number of digits; they are not guaranteed to be accurate to this
precision.

H02CBF NAG Fortran Library Manual

H02CBF.10 [NP3546/20A]

9 Example

To minimize the quadratic function fðxÞ ¼ cTxþ 1
2
xTHx, where

c ¼ ð�0:02; �0:2; �0:2; �0:2; �0:2; 0:04; 0:04ÞT

H ¼

2 0 0 0 0 0 0

0 2 0 0 0 0 0

0 0 2 2 0 0 0

0 0 2 2 0 0 0

0 0 0 0 2 0 0

0 0 0 0 0 �2 �2

0 0 0 0 0 �2 �2

0
BBBBBBBB@

1
CCCCCCCCA

subject to the bounds

�0:01 � x1 � 0:01
�0:1 � x2 � 0:15
�0:01 � x3 � 0:03
�0:04 � x4 � 0:02
�0:1 � x5 � 0:05
�0:01 � x6
�0:01 � x7

to the general constraints

x1 þ x2 þ x3 þ x4 þ x5 þ x6 þ x7 ¼ �0:13
0:15x1 þ 0:04x2 þ 0:02x3 þ 0:04x4 þ 0:02x5 þ 0:01x6 þ 0:03x7 � �0:0049
0:03x1 þ 0:05x2 þ 0:08x3 þ 0:02x4 þ 0:06x5 þ 0:01x6 � �0:0064
0:02x1 þ 0:04x2 þ 0:01x3 þ 0:02x4 þ 0:02x5 � �0:0037
0:02x1 þ 0:03x2 þ 0:01x5 � �0:0012

�0:0992 � 0:70x1 þ 0:75x2 þ 0:80x3 þ 0:75x4 þ 0:80x5 þ 0:97x6
� 0:003 � 0:02x1 þ 0:06x2 þ 0:08x3 þ 0:12x4 þ 0:02x5 þ 0:01x6 þ 0:97x7 � 0:002

and the variable x4 is constrained to be integer.

The initial point, which is infeasible, is

x0 ¼ ð�0:01;�0:03; 0:0;�0:01;�0:1; 0:02; 0:01ÞT :
The optimal solution (to five figures) is

x� ¼ ð�0:01;�0:073328;�0:00025809; 0:0;�0:063354; 0:014109; 0:0028312ÞT :
The document for H02CCF includes an example program to solve the same problem using some of the
optional parameters described in H02CBF.

9.1 Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read the
Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this manual,
the results produced may not be identical for all implementations.

* H02CBF Example Program Text.
* Mark 20 Revised. NAG Copyright 2001.
* .. Parameters ..

INTEGER NIN, NOUT, LINTVR
PARAMETER (NIN=5,NOUT=6,LINTVR=1)
INTEGER NMAX, NCMAX
PARAMETER (NMAX=10,NCMAX=10)
INTEGER LDA, LDH
PARAMETER (LDA=NCMAX,LDH=NMAX)
INTEGER LIWORK, LWORK, MDEPTH
PARAMETER (LIWORK=1000,LWORK=10000,MDEPTH=30)

* .. Local Scalars ..
real OBJ
INTEGER I, IFAIL, J, N, NCLIN, STRTGY

H – Operations Research H02CBF

[NP3546/20A] H02CBF.11

* .. Local Arrays ..
real A(LDA,NMAX), AX(NCMAX), BL(NMAX+NCMAX),

+ BU(NMAX+NCMAX), CLAMDA(NMAX+NCMAX), CVEC(NMAX),
+ H(LDH,NMAX), WORK(LWORK), X(NMAX+NCMAX)
INTEGER INTVAR(LINTVR), ISTATE(NMAX+NCMAX), IWORK(LIWORK)

* .. External Subroutines ..
EXTERNAL E04NFU, H02CBF, H02CBU, H02CDF

* .. Executable Statements ..
WRITE (NOUT,*) ’H02CBF Example Program Results’

* Skip heading in data file
READ (NIN,*)
READ (NIN,*) N, NCLIN
IF (N.LE.NMAX .AND. NCLIN.LE.NCMAX) THEN

*
* Read CVEC, A, BL, BU, X and H from data file
*

READ (NIN,*) (CVEC(I),I=1,N)
READ (NIN,*) ((A(I,J),J=1,N),I=1,NCLIN)
READ (NIN,*) (BL(I),I=1,N+NCLIN)
READ (NIN,*) (BU(I),I=1,N+NCLIN)
READ (NIN,*) (X(I),I=1,N)
READ (NIN,*) ((H(I,J),J=1,N),I=1,N)

*
STRTGY = 2
INTVAR(1) = 4

*
CALL H02CDF(’Nolist’)
CALL H02CDF(’Print Level = 0’)

*
* Solve the problem
*

IFAIL = 0
*

CALL H02CBF(N,NCLIN,A,LDA,BL,BU,CVEC,H,LDH,E04NFU,INTVAR,
+ LINTVR,MDEPTH,ISTATE,X,OBJ,AX,CLAMDA,STRTGY,IWORK,
+ LIWORK,WORK,LWORK,H02CBU,IFAIL)

*
* Print out the best integer solution found
*

WRITE (NOUT,99999) OBJ, (I,X(I),I=1,N)
*

END IF
STOP

*
99999 FORMAT (’ Optimal Integer Value is = ’,e20.8,/’ Components are ’,

+ /(’ x(’,I3,’) = ’,F15.8))
END

9.2 Program Data

H02CBF Example Program Data
7 7 :Values of N and NCLIN

-0.02 -0.20 -0.20 -0.20 -0.20 0.04 0.04 :End of CVEC
1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.15 0.04 0.02 0.04 0.02 0.01 0.03
0.03 0.05 0.08 0.02 0.06 0.01 0.00
0.02 0.04 0.01 0.02 0.02 0.00 0.00
0.02 0.03 0.00 0.00 0.01 0.00 0.00
0.70 0.75 0.80 0.75 0.80 0.97 0.00
0.02 0.06 0.08 0.12 0.02 0.01 0.97 :End of matrix A

-0.01 -0.10 -0.01 -0.04 -0.10 -0.01 -0.01
-0.13 -1.0e+25 -1.0e+25 -1.0e+25 -1.0e+25 -9.92e-02 -3.0e-03 :End of BL
0.01 0.15 0.03 0.02 0.05 1.0e+25 1.0e+25

-0.13 -4.9e-03 -6.4e-03 -3.7e-03 -1.2e-03 1.0e+25 2.0e-03 :End of BU
-0.01 -0.03 0.00 -0.01 -0.10 0.02 0.01 :End of X
2.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 2.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 2.00 2.00 0.00 0.00 0.00
0.00 0.00 2.00 2.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 2.00 0.00 0.00

H02CBF NAG Fortran Library Manual

H02CBF.12 [NP3546/20A]

0.00 0.00 0.00 0.00 0.00 -2.00 -2.00
0.00 0.00 0.00 0.00 0.00 -2.00 -2.00 :End of matrix H

9.3 Program Results

H02CBF Example Program Results
Optimal Integer Value is = 0.37469662E-01
Components are
x(1) = -0.01000000
x(2) = -0.07332830
x(3) = -0.00025809
x(4) = 0.00000000
x(5) = -0.06335433
x(6) = 0.01410944
x(7) = 0.00283128

Note: The remainder of this document is intended for more advanced users. Section 10 contains a detailed

description of the algorithm which may be needed in order to understand Section 11 and Section 12. Section 11

describes the optional parameters which may be set by calls to H02CCF and/or H02CDF. Section 12 describes

the quantities which can be requested to monitor the course of the computation.

10 Algorithmic Details

H02CBF implements a basic Branch and bound algorithm (see Section 3) using E04NFF=E04NFA as its
basic sub-problem solver. See below for details of its algorithm.

10.1 Overview

H02CBF is based on an inertia-controlling method that maintains a Cholesky factorization of the reduced
Hessian (see below). The method is based on that of Gill and Murray (1978), and is described in detail by
Gill et al. (1991). Here we briefly summarize the main features of the method. Where possible, explicit
reference is made to the names of variables that are parameters of H02CBF or appear in the printed output.
H02CBF has two phases: finding an initial feasible point by minimizing the sum of infeasibilities (the
feasibility phase), and minimizing the quadratic objective function within the feasible region (the optimality
phase). The computations in both phases are performed by the same subroutines. The two-phase nature of
the algorithm is reflected by changing the function being minimized from the sum of infeasibilities to the
quadratic objective function. The feasibility phase does not perform the standard simplex method (i.e., it
does not necessarily find a vertex), except in the LP case when mL � n. Once any iterate is feasible, all
subsequent iterates remain feasible.

H02CBF has been designed to be efficient when used to solve a sequence of related problems – for
example, within a sequential quadratic programming method for nonlinearly constrained optimization (e.g.,
E04UCF=E04UCA). In particular, the user may specify an initial working set (the indices of the
constraints believed to be satisfied exactly at the solution); see the discussion of the optional parameter
Warm Start in Section 11.2.

In general, an iterative process is required to solve a quadratic program. (For simplicity, we shall always
consider a typical iteration and avoid reference to the index of the iteration.) Each new iterate �xx is defined
by

�xx ¼ xþ �p ð1Þ
where the step length � is a non-negative scalar, and p is called the search direction.

At each point x, a working set of constraints is defined to be a linearly independent subset of the
constraints that are satisfied ‘exactly’ (to within the tolerance defined by the optional parameter Feasibility
Tolerance; see Section 11.2). The working set is the current prediction of the constraints that hold with
equality at the solution of a linearly constrained QP problem. The search direction is constructed so that
the constraints in the working set remain unaltered for any value of the step length. For a bound constraint
in the working set, this property is achieved by setting the corresponding element of the search direction to
zero. Thus, the associated variable is fixed, and specification of the working set induces a partition of x
into fixed and free variables. During a given iteration, the fixed variables are effectively removed from the

H – Operations Research H02CBF

[NP3546/20A] H02CBF.13

problem; since the relevant elements of the search direction are zero, the columns of A corresponding to
fixed variables may be ignored.

Let mW denote the number of general constraints in the working set and let nFX denote the number of
variables fixed at one of their bounds (mW and nFX are the quantities Lin and Bnd in the monitoring file
output from H02CBF; see Section 12). Similarly, let nFR (nFR ¼ n� nFX) denote the number of free
variables. At every iteration, the variables are re-ordered so that the last nFX variables are fixed, with all
other relevant vectors and matrices ordered accordingly.

10.2 Definition of the Search Direction

Let AFR denote the mW by nFR sub-matrix of general constraints in the working set corresponding to the
free variables, and let pFR denote the search direction with respect to the free variables only. The general
constraints in the working set will be unaltered by any move along p if

AFRpFR ¼ 0: ð2Þ
In order to compute pFR, the TQ factorization of AFR is used:

AFRQFR ¼ ð0 T Þ; ð3Þ
where T is a non-singular mW by mW upper triangular matrix (i.e., tij ¼ 0 if i > j), and the non-singular

nFR by nFR matrix QFR is the product of orthogonal transformations (see Gill et al. (1984)). If the
columns of QFR are partitioned so that

QFR ¼ ðZ Y Þ;
where Y is nFR by mW, then the nZðnZ ¼ nFR �mWÞ columns of Z form a basis for the null space of
AFR. Let nR be an integer such that 0 � nR � nZ , and let ZR denote a matrix whose nR columns are a
subset of the columns of Z. (The integer nR is the quantity Zr in the monitoring output from H02CBF. In
many cases, ZR will include all the columns of Z.) The direction pFR will satisfy (2) if

pFR ¼ ZRpR; ð4Þ
where pR is any nR-vector.

Let Q denote the n by n matrix

Q ¼ QFR

IFX

� �
;

where IFX is the identity matrix of order nFX. Let HQ and gQ denote the n by n transformed Hessian and

transformed gradient

HQ ¼ QTHQ and gQ ¼ QT ðcþHxÞ

and let the matrix of first nR rows and columns of HQ be denoted by HR and the vector of the first nR

elements of gQ be denoted by gR. The quantities HR and gR are known as the reduced Hessian and

reduced gradient of fðxÞ, respectively. Roughly speaking, gR and HR describe the first and second
derivatives of an unconstrained problem for the calculation of pR.

At each iteration, a triangular factorization of HR is available. If HR is positive-definite, HR ¼ RTR,

where R is the upper triangular Cholesky factor of HR. If HR is not positive-definite, HR ¼ RTDR,
where D ¼ diagð1; 1; . . . ; 1; �Þ, with � � 0.

The computation is arranged so that the reduced-gradient vector is a multiple of eR, a vector of all zeros
except in the last (i.e., nRth) position. This allows the vector pR in (4) to be computed from a single back-
substitution

RpR ¼ �eR ð5Þ
where � is a scalar that depends on whether or not the reduced Hessian is positive-definite at x. In the
positive-definite case, xþ p is the minimizer of the objective function subject to the constraints (bounds
and general) in the working set treated as equalities. If HR is not positive-definite, pR satisfies the
conditions

H02CBF NAG Fortran Library Manual

H02CBF.14 [NP3546/20A]

pTRHRpR < 0 and gTRpR � 0;

which allow the objective function to be reduced by any positive step of the form xþ �p.

10.3 The Main Iteration

If the reduced gradient is zero, x is a constrained stationary point in the subspace defined by Z. During
the feasibility phase, the reduced gradient will usually be zero only at a vertex (although it may be zero at
non-vertices in the presence of constraint dependencies). During the optimality phase, a zero reduced
gradient implies that x minimizes the quadratic objective when the constraints in the working set are
treated as equalities. At a constrained stationary point, Lagrange multipliers �C and �B for the general and
bound constraints are defined from the equations

AT
FR�C ¼ gFR and �B ¼ gFX �AT

FX�C: ð6Þ
Given a positive constant � of the order of the machine precision, a Lagrange multiplier �j corresponding

to an inequality constraint in the working set is said to be optimal if �j � � when the associated constraint

is at its upper bound, or if �j � �� when the associated constraint is at its lower bound. If a multiplier is

non-optimal, the objective function (either the true objective or the sum of infeasibilities) can be reduced
by deleting the corresponding constraint (with index Jdel; see Section 12) from the working set.

If optimal multipliers occur during the feasibility phase and the sum of infeasibilities is non-zero, there is
no feasible point, and the user can force H02CBF to continue until the minimum value of the sum of
infeasibilities has been found; see the discussion of the optional parameter Minimum Sum of
Infeasibilities in Section 11.2. At such a point, the Lagrange multiplier �j corresponding to an inequality

constraint in the working set will be such that �ð1þ �Þ � �j � � when the associated constraint is at its

upper bound, and �� � �j � ð1þ �Þ when the associated constraint is at its lower bound. Lagrange

multipliers for equality constraints will satisfy j�jj � 1þ �.

If the reduced gradient is not zero, Lagrange multipliers need not be computed and the non-zero elements
of the search direction p are given by ZRpR (see (4) and (5)). The choice of step length is influenced by
the need to maintain feasibility with respect to the satisfied constraints. If HR is positive-definite and
xþ p is feasible, � will be taken as unity. In this case, the reduced gradient at �xx will be zero, and
Lagrange multipliers are computed. Otherwise, � is set to �M, the step to the ‘nearest’ constraint (with
index Jadd; see Section 12), which is added to the working set at the next iteration.

Each change in the working set leads to a simple change to AFR: if the status of a general constraint
changes, a row of AFR is altered; if a bound constraint enters or leaves the working set, a column of AFR

changes. Explicit representations are recurred of the matrices T , QFR and R; and of vectors QTg, and

QTc. The triangular factor R associated with the reduced Hessian is only updated during the optimality
phase.

One of the most important features of H02CBF is its control of the conditioning of the working set, whose
nearness to linear dependence is estimated by the ratio of the largest to smallest diagonal elements of the
TQ factor T (the printed value Cond T; see Section 12). In constructing the initial working set, constraints
are excluded that would result in a large value of Cond T.

H02CBF includes a rigorous procedure that prevents the possibility of cycling at a point where the active
constraints are nearly linearly dependent (see Gill et al. (1989)). The main feature of the anti-cycling
procedure is that the feasibility tolerance is increased slightly at the start of every iteration. This not only
allows a positive step to be taken at every iteration, but also provides, whenever possible, a choice of
constraints to be added to the working set. Let �M denote the maximum step at which xþ �Mp does not
violate any constraint by more than its feasibility tolerance. All constraints at a distance � (� � �M) along
p from the current point are then viewed as acceptable candidates for inclusion in the working set. The
constraint whose normal makes the largest angle with the search direction is added to the working set.

10.4 Choosing the Initial Working Set

At the start of the optimality phase, a positive-definite HR can be defined if enough constraints are
included in the initial working set. (The matrix with no rows and columns is positive-definite by

H – Operations Research H02CBF

[NP3546/20A] H02CBF.15

definition, corresponding to the case when AFR contains nFR constraints.) The idea is to include as many
general constraints as necessary to ensure that the reduced Hessian is positive-definite.

Let HZ denote the matrix of the first nZ rows and columns of the matrix HQ ¼ QTHQ at the beginning of

the optimality phase. A partial Cholesky factorization is used to find an upper triangular matrix R that is
the factor of the largest positive-definite leading sub-matrix of HZ . The use of interchanges during the
factorization of HZ tends to maximize the dimension of R. (The condition of R may be controlled using
the optional parameter Rank Tolerance; see Section 11.2.) Let ZR denote the columns of Z
corresponding to R, and let Z be partitioned as Z ¼ ðZR ZAÞ. A working set for which ZR defines the

null space can be obtained by including the rows of ZT
A as ‘artificial constraints’. Minimization of the

objective function then proceeds within the subspace defined by ZR, as described in Section 10.2.

The artificially augmented working set is given by

�AAFR ¼ ZT
A

AFR

� �
; ð7Þ

so that pFR will satisfy AFRpFR ¼ 0 and ZT
ApFR ¼ 0. By definition of the TQ factorization, �AAFR

automatically satisfies the following:

�AAFRQFR ¼ ZT
A

AFR

� �
QFR ¼ ZT

A

AFR

� �
ðZR ZA Y Þ ¼ ð0 �TT Þ;

where

�TT ¼ I 0

0 T

� �
;

and hence the TQ factorization of (7) is available trivially from T and QFR without additional expense.

The matrix ZA is not kept fixed, since its role is purely to define an appropriate null space; the TQ
factorization can therefore be updated in the normal fashion as the iterations proceed. No work is required

to ‘delete’ the artificial constraints associated with ZA when ZT
RgFR ¼ 0, since this simply involves

repartitioning QFR. The ‘artificial’ multiplier vector associated with the rows of ZT
A is equal to ZT

AgFR, and
the multipliers corresponding to the rows of the ‘true’ working set are the multipliers that would be
obtained if the artificial constraints were not present. If an artificial constraint is ‘deleted’ from the
working set, an A appears alongside the entry in the Jdel column of the monitoring file output (see
Section 12).

The number of columns in ZA and ZR, the Euclidean norm of ZT
RgFR, and the condition estimator of R

appear in the monitoring file output as Art, Zr, Norm Gz and Cond Rz respectively (see Section 12).

Under some circumstances, a different type of artificial constraint is used when solving a linear program.
Although the algorithm of H02CBF does not usually perform simplex steps (in the traditional sense), there
is one exception: a linear program with fewer general constraints than variables (i.e., mL � n). (Use of the
simplex method in this situation leads to savings in storage.) At the starting point, the ‘natural’ working
set (the set of constraints exactly or nearly satisfied at the starting point) is augmented with a suitable
number of ‘temporary’ bounds, each of which has the effect of temporarily fixing a variable at its current
value. In subsequent iterations, a temporary bound is treated as a standard constraint until it is deleted
from the working set, in which case it is never added again. If a temporary bound is ‘deleted’ from the
working set, an F (for ‘Fixed’) appears alongside the entry in the Jdel column of the monitoring file
output (see Section 12).

11 Optional Parameters

Several optional parameters in H02CBF define choices in the problem specification or the algorithm logic.
In order to reduce the number of formal parameters of H02CBF these optional parameters have associated
default values that are appropriate for most problems. Therefore, the user need only specify those optional
parameters whose values are to be different from their default values.

The remainder of this section can be skipped by users who wish to use the default values for all optional
parameters. A complete list of optional parameters and their default values is given in Section 11.1.

H02CBF NAG Fortran Library Manual

H02CBF.16 [NP3546/20A]

Optional parameters may be specified by calling one, or both, of the routines H02CCF and H02CDF prior
to a call to H02CBF.

H02CCF reads options from an external options file, with Begin and End as the first and last lines
respectively and each intermediate line defining a single optional parameter. For example,

Begin
Print Level = 5

End

The call

CALL H02CCF (IOPTNS, INFORM)

can then be used to read the file on unit IOPTNS. INFORM will be zero on successful exit. H02CCF
should be consulted for a full description of this method of supplying optional parameters.

H02CDF can be called to supply options directly, one call being necessary for each optional parameter.
For example,

CALL H02CDF (’Print Level = 5’)

H02CDF should be consulted for a full description of this method of supplying optional parameters.

All optional parameters not specified by the user are set to their default values. Optional parameters
specified by the user are unaltered by H02CBF (unless they define invalid values) and so remain in effect
for subsequent calls unless altered by the user.

11.1 Optional Parameter Checklist and Default Values

For easy reference, the following list shows all the valid keywords and their default values. The symbol �
represents the machine precision (see X02AJF).

Optional Parameters
Default Values

Check frequency
50

Cold/Warm start
Cold Start

Crash tolerance
0.01

Defaults
Expand frequency

5
Feasibility phase iteration limit
maxð50; 5ðnþmLÞÞ
Feasibility toleranceffiffi

�
p

Hessian rows
n

Infinite bound size

1020

Infinite step size

maxðbigbnd; 1020Þ
Iteration limit
maxð50; 5ðnþmLÞÞ
List/Nolist

List
Maximum degrees of freedom

n
Minimum sum of infeasibilities

No

H – Operations Research H02CBF

[NP3546/20A] H02CBF.17

Monitoring file
�1

Optimality phase iteration limit
maxð50; 5ðnþmLÞÞ
Optimality tolerance

�0:8

Print level
10

Problem type
QP2

Rank tolerance
100�

11.2 Description of the Optional Parameters

The following list (in alphabetical order) gives the valid options. For each option, we give the keyword,
any essential optional qualifiers, the default value, and the definition. The minimum abbreviation of each
keyword is underlined. If no characters of an optional qualifier are underlined, the qualifier may be
omitted. The letter a denotes a phrase (character string) that qualifies an option. The letters i and r denote
INTEGER and real values required with certain options. The number � is a generic notation for machine
precision (see X02AJF).

Check Frequency i Default ¼ 50

Every ith iteration, a numerical test is made to see if the current solution x satisfies the constraints in the
working set. If the largest residual of the constraints in the working set is judged to be too large, the
current working set is refactorized and the variables are recomputed to satisfy the constraints more
accurately. If i � 0, the default value is used.

Cold Start Default ¼ Cold Start
Warm Start

This option specifies how the initial working set is chosen. With a Cold Start, H02CBF chooses the
initial working set based on the values of the variables and constraints at the initial point. Broadly
speaking, the initial working set will include equality constraints and bounds or inequality constraints that
violate or ‘nearly’ satisfy their bounds (to within Crash Tolerance; see below).

With a Warm Start, the user must provide a valid definition of every element of the array ISTATE (see
Section 5 for the definition of this array). H02CBF will override the user’s specification of ISTATE if
necessary, so that a poor choice of the working set will not cause a fatal error. For instance, any elements
of ISTATE which are set to �2, �1 or 4 will be reset to zero, as will any elements which are set to 3 when
the corresponding elements of BL and BU are not equal. A warm start will be advantageous if a good
estimate of the initial working set is available – for example, when H02CBF is called repeatedly to solve
related problems.

Crash Tolerance r Default ¼ 0:01

This value is used in conjunction with the optional parameter Cold Start (the default value) when
H02CBF selects an initial working set. If 0 � r � 1, the initial working set will include (if possible)
bounds or general inequality constraints that lie within r of their bounds. In particular, a constraint of the

form aTj x � l will be included in the initial working set if jaTj x� lj � rð1þ jljÞ. If r < 0 or r > 1, the

default value is used.

Defaults

This special keyword may be used to reset all optional parameters to their default values.

Expand Frequency i Default ¼ 5

This option is part of an anti-cycling procedure designed to guarantee progress even on highly degenerate
problems.

H02CBF NAG Fortran Library Manual

H02CBF.18 [NP3546/20A]

The strategy is to force a positive step at every iteration, at the expense of violating the constraints by a
small amount. Suppose that the value of the optional parameter Feasibility Tolerance is �. Over a period
of i iterations, the feasibility tolerance actually used by H02CBF (i.e., the working feasibility tolerance)
increases from 0:5� to � (in steps of 0:5�=i).

At certain stages the following ‘resetting procedure’ is used to remove constraint infeasibilities. First, all
variables whose upper or lower bounds are in the working set are moved exactly onto their bounds. A
count is kept of the number of non-trivial adjustments made. If the count is positive, iterative refinement is
used to give variables that satisfy the working set to (essentially) machine precision. Finally, the working
feasibility tolerance is reinitialised to 0:5�.

If a problem requires more than i iterations, the resetting procedure is invoked and a new cycle of i
iterations is started with i incremented by 10. (The decision to resume the feasibility phase or optimality
phase is based on comparing any constraint infeasibilities with �.)

The resetting procedure is also invoked when H02CBF reaches an apparently optimal, infeasible or
unbounded solution, unless this situation has already occurred twice. If any non-trivial adjustments are
made, iterations are continued.

If i � 0, the default value is used. If i � 9999999, no anti-cycling procedure is invoked.

Feasibility Phase Iteration Limit i1 Default ¼ maxð50; 5ðnþmLÞÞ
Optimality Phase Iteration Limit i2 Default ¼ maxð50; 5ðnþmLÞÞ
The scalars i1 and i2 specify the maximum number of iterations allowed in the feasibility and optimality
phases. Optimality Phase Iteration Limit is equivalent to Iteration Limit. Setting i1 ¼ 0 and
Print Level > 0 means that the workspace needed will be computed and printed, but no iterations will be
performed. If i1 < 0 or i2 < 0, the default value is used.

Feasibility Tolerance r Default ¼
ffiffi
�

p

If r � �, r defines the maximum acceptable absolute violation in each constraint at a ‘feasible’ point. For
example, if the variables and the coefficients in the general constraints are of order unity, and the latter are

correct to about 6 decimal digits, it would be appropriate to specify r as 10�6. If 0 � r < �, the default
value is used.

H02CBF attempts to find a feasible solution before optimizing the objective function. If the sum of
infeasibilities cannot be reduced to zero, the optional parameter Minimum Sum of Infeasibilities (see
below) can be used to find the minimum value of the sum. Let Sinf be the corresponding sum of
infeasibilities. If Sinf is quite small, it may be appropriate to raise r by a factor of 10 or 100. Otherwise,
some error in the data should be suspected.

Note that a ‘feasible solution’ is a solution that satisfies the current constraints to within the tolerance r.

Hessian Rows i Default ¼ n

Note that this option does not apply to problems of type FP or LP.

This specifies m, the number of rows of the Hessian matrix H. The default value of m is n, the number
of variables of the problem.

If the problem is of type QP, m will usually be n, the number of variables. However, a value of m less
than n is appropriate for QP3 or QP4 if H is an upper trapezoidal matrix with m rows. Similarly, m may
be used to define the dimension of a leading block of non-zeros in the Hessian matrices of QP1 or QP2, in
which case the last n�m rows and columns of H are assumed to be zero. In the QP case, m should not
be greater than n; if it is, the last m� n rows of H are ignored.

If i < 0 or i > n, the default value is used.

Infinite Bound Size r Default ¼ 1020

If r > 0, r defines the ‘infinite’ bound bigbnd in the definition of the problem constraints. Any upper
bound greater than or equal to bigbnd will be regarded as plus infinity (and similarly any lower bound less
than or equal to �bigbnd will be regarded as minus infinity). If r � 0, the default value is used.

H – Operations Research H02CBF

[NP3546/20A] H02CBF.19

Infinite Step Size r Default ¼ maxðbigbnd; 1020Þ
If r > 0, r specifies the magnitude of the change in variables that will be considered a step to an
unbounded solution. (Note that an unbounded solution can occur only when the Hessian is not positive-
definite.) If the change in x during an iteration would exceed the value of r, the objective function is
considered to be unbounded below in the feasible region. If r � 0, the default value is used.

Iteration Limit i Default ¼ maxð50; 5ðnþmLÞÞ
Iters
Itns

See Feasibility Phase Iteration Limit above.

List Default ¼ List
Nolist

Normally each optional parameter specification is printed as it is supplied. Nolist may be used to suppress
the printing and List may be used to restore printing.

Maximum Degrees of Freedom i Default ¼ n

Note that this option does not apply to problems of type FP or LP.

This places a limit on the storage allocated for the triangular factor R of the reduced Hessian HR. Ideally,
i should be set slightly larger than the value of nR expected at the solution. It need not be larger than
mN þ 1, where mN is the number of variables that appear nonlinearly in the quadratic objective function.
For many problems it can be much smaller than mN.

For quadratic problems, a minimizer may lie on any number of constraints, so that nR may vary between 1
and n. The default value of i is therefore the number of variables n. If Hessian Rows m is specified, the
default value of i is the same number, m.

Minimum Sum of Infeasibilities Default ¼ No
Minimum Sum of Infeasibilities

If no feasible point exists for the constraints, this option is used to control whether or not H02CBF will
calculate a point that minimizes the constraint violations. If Minimum Sum of Infeasibilities ¼ No,
H02CBF will terminate as soon as it is evident that no feasible point exists for the constraints. The final
point will generally not be the point at which the sum of infeasibilities is minimized. If Minimum Sum of
Infeasibilities ¼ Yes, H02CBF will continue until the sum of infeasibilities is minimized.

Monitoring File i Default ¼ �1

If i � 0 and Print Level � 5 (see below), monitoring information produced by H02CBF at every iteration
is sent to a file with logical unit number i. If i < 0 and/or Print Level < 5, no monitoring information is
produced.

Optimality Phase Iteration Limit i Default ¼ maxð50; 5ðnþmLÞÞ
See Feasibility Phase Iteration Limit above.

Optimality Tolerance r Default ¼ �0:8

If r � �, r defines the tolerance used to determine if the bounds and general constraints have the right
‘sign’ for the solution to be judged to be optimal.

If 0 � r < �, the default value is used.

Print Level i Default ¼ 10

The value of i controls the amount of printout produced by H02CBF, as indicated below. A detailed
description of the printed output is given in Section 8.2 (summary output at each iteration and the final
solution) and Section 12 (monitoring information at each iteration). If i < 0, the default value is used.

The following printout is sent to the current advisory message unit (as defined by X04ABF):

H02CBF NAG Fortran Library Manual

H02CBF.20 [NP3546/20A]

i
Output

0
No output.

1
The final solution
only.

5
One line of sum-
mary output (< 80
characters; see
Section 8.2) for
each iteration (no
printout of the final
solution).

� 10
The final solution
and one line of
summary output
for each iteration.

The following printout is sent to the logical unit number defined by the optional parameter Monitoring
File (see above):

i
Output

< 5
No output.

� 5
One long line of
output (> 80 char-
acters; see
Section 12) for
each iteration (no
printout of the final
solution).

� 20
At each iteration,
the Lagrange multi-
pliers, the variables
x, the constraint
values Ax and the
constraint status.

� 30
At each iteration,
the diagonal ele-
ments of the upper
triangular matrix T
associated with the
TQ factorization
(3) (see
Section 10.2) of
the working set,
and the diagonal
elements of the
upper triangular
matrix R.

H – Operations Research H02CBF

[NP3546/20A] H02CBF.21

If Print Level � 5 and the unit number defined by Monitoring File is the same as that defined by
X04ABF, then the summary output is suppressed.

Problem Type a Default ¼ QP2

This option specifies the type of objective function to be minimized during the optimality phase. The
following are the five optional keywords and the dimensions of the arrays that must be specified in order to
define the objective function:

LP
H not referenced,
CVEC(N) required;

QP1
H(LDH,*) sym-
metric, CVEC not
referenced;

QP2
H(LDH,*) sym-
metric, CVEC(N)
required;

QP3
H(LDH,*) upper
trapezoidal, CVEC
not referenced;

QP4
H(LDH,*) upper
trapezoidal,
CVEC(N) required.

For problems of type FP, the objective function is omitted and neither H nor CVEC are referenced.

The following keywords are also acceptable. The minimum abbreviation of each keyword is underlined.

a
Option

Quadratic
QP2

Linear
LP

Feasible
FP

In addition, the keyword QP is equivalent to the default option QP2.

If H ¼ 0, i.e., the objective function is purely linear, the efficiency of H02CBF may be increased by
specifying a as LP.

Rank Tolerance r Default ¼ 100�

Note that this option does not apply to problems of type FP or LP.

This parameter enables the user to control the condition number of the triangular factor R (see Section 10).
If �i denotes the function �i ¼ maxfjR11j; jR22j; . . . ; jRiijg, the dimension of R is defined to be smallest

index i such that jRiþ1;iþ1j �
ffiffiffi
r

p
j�iþ1j. If r � 0, the default value is used.

Warm Start

See Cold Start above.

H02CBF NAG Fortran Library Manual

H02CBF.22 [NP3546/20A]

12 Description of Monitoring Information

This section describes the long line of output (> 80 characters) which forms part of the monitoring
information produced by H02CBF. (See also the description of the optional parameters Monitoring File
and Print Level in Section 11.2.) The level of printed output can be controlled by the user.

To aid interpretation of the printed results, the following convention is used for numbering the constraints:
indices 1 through n refer to the bounds on the variables, and indices nþ 1 through nþmL refer to the
general constraints. When the status of a constraint changes, the index of the constraint is printed, along
with the designation L (lower bound), U (upper bound), E (equality), F (temporarily fixed variable) or A
(artificial constraint).

When Print Level � 5 and Monitoring File � 0, the following line of output is produced at every
iteration on the unit number specified by Monitoring File. In all cases, the values of the quantities printed
are those in effect on completion of the given iteration.

Itn is the iteration count.

Jdel is the index of the constraint deleted from the working set. If Jdel is zero, no
constraint was deleted.

Jadd is the index of the constraint added to the working set. If Jadd is zero, no constraint
was added.

Step is the step taken along the computed search direction. If a constraint is added during
the current iteration, Step will be the step to the nearest constraint. When the
problem is of type LP, the step can be greater than one during the optimality phase.

Ninf is the number of violated constraints (infeasibilities). This will be zero during the
optimality phase.

Sinf/Objective is the value of the current objective function. If x is not feasible, Sinf gives a
weighted sum of the magnitudes of constraint violations. If x is feasible,
Objective is the value of the objective function. The output line for the final
iteration of the feasibility phase (i.e., the first iteration for which Ninf is zero) will
give the value of the true objective at the first feasible point.

During the optimality phase, the value of the objective function will be non-
increasing. During the feasibility phase, the number of constraint infeasibilities will
not increase until either a feasible point is found, or the optimality of the multipliers
implies that no feasible point exists. Once optimal multipliers are obtained, the
number of infeasibilities can increase, but the sum of infeasibilities will either
remain constant or be reduced until the minimum sum of infeasibilities is found.

Bnd is the number of simple bound constraints in the current working set.

Lin is the number of general linear constraints in the current working set.

Art is the number of artificial constraints in the working set, i.e., the number of columns
of ZA (see Section 10.4).

Zr is the number of columns of ZR (see Section 10.2). Zr is the dimension of the
subspace in which the objective function is currently being minimized. The value of
Zr is the number of variables minus the number of constraints in the working set;
i.e., Zr ¼ n� ðBndþ Linþ ArtÞ.
The value of nZ , the number of columns of Z (see Section 10.2) can be calculated
as nZ ¼ n� ðBndþ LinÞ. A zero value of nZ implies that x lies at a vertex of the
feasible region.

Norm Gz is kZT
RgFRk, the Euclidean norm of the reduced gradient with respect to ZR (see

Section 10.2 and Section 10.4). During the optimality phase, this norm will be
approximately zero after a unit step.

NOpt is the number of non-optimal Lagrange multipliers at the current point. NOpt is not
printed if the current x is infeasible or no multipliers have been calculated. At a
minimizer, NOpt will be zero.

H – Operations Research H02CBF

[NP3546/20A] H02CBF.23

Min Lm is the value of the Lagrange multiplier associated with the deleted constraint. If Min
Lm is negative, a lower bound constraint has been deleted, if Min Lm is positive, an
upper bound constraint has been deleted. If no multipliers are calculated during a
given iteration, Min Lm will be zero.

Cond T is a lower bound on the condition number of the working set.

Cond Rz is a lower bound on the condition number of the triangular factor R (the Cholesky
factor of the current reduced Hessian; see Section 10.2). If the problem is specified
to be of type LP, Cond Rz is not printed.

Rzz is the last diagonal element � of the matrix D associated with the RTDR
factorization of the reduced Hessian HR (see Section 10.2). Rzz is only printed if
HR is not positive-definite (in which case � 6¼ 1). If the printed value of Rzz is
small in absolute value, then HR is approximately singular. A negative value of Rzz
implies that the objective function has negative curvature on the current working
set.

H02CBF NAG Fortran Library Manual

H02CBF.24 (last) [NP3546/20A]

	H02CBF
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	N
	NCLIN
	A
	LDA
	BL
	BU
	CVEC
	H
	LDH
	QPHESS
	N
	JTHCOL
	H
	LDH
	X
	HX

	INTVAR
	LINTVR
	MDEPTH
	ISTATE
	XS
	OBJ
	AX
	CLAMDA
	STRTGY
	IWRK
	LIWRK
	WRK
	LWRK
	MONIT
	INTFND
	NODES
	DEPTH
	OBJ
	X
	BSTVAL
	BSTSOL
	BL
	BU
	N
	HALT
	COUNT

	IFAIL

	6 Error Indicators and Warnings
	IFAIL = -1
	IFAIL = 1
	IFAIL = 2
	IFAIL = 3
	IFAIL = 4
	IFAIL = 5
	IFAIL = 6
	IFAIL = 7
	IFAIL = 8
	IFAIL = 9
	IFAIL = 10
	IFAIL = 11
	IFAIL = 12

	7 Accuracy
	8 Further Comments
	8.1 Scaling
	8.2 Description of the Printed Output

	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	10 Algorithmic Details
	10.1 Overview
	10.2 Definition of the Search Direction
	10.3 The Main Iteration
	10.4 Choosing the Initial Working Set

	11 Optional Parameters
	11.1 Optional Parameter Checklist and Default Values
	11.2 Description of the Optional Parameters
	[Ch]eck Frequency
	[Co]ld Start
	[W]arm Start
	[Cr]ash Tolerance
	[Defaults]
	[Ex]pand Frequency
	[F]easibility [P]hase Iteration Limit
	[O]ptimality [P]hase Iteration Limit
	[F]easibility [To]lerance
	[H]essian Rows
	[In]finite [B]ound Size
	[In]finite [S]tep Size
	[It]eration Limit
	[It]ers
	[It]ns
	[List]
	[Nolist]
	[Ma]ximum Degrees of Freedom
	[Min]imum [S]um of Infeasibilities
	[Mo]nitoring File
	[O]ptimality [T]olerance
	[Pri]nt Level
	[Pro]blem [Ty]pe
	[R]ank Tolerance

	12 Description of Monitoring Information

	NAG Library Manual, Mark 21
	Foreword
	Introduction
	Essential Introduction - essential reading for all users
	NAG Fortran Library specific documentation
	Mark 21 News

	NAG SMP Library specific documentation
	SMP Introduction - essential reading for all SMP users
	Mark 21 News - SMP Library
	SMP Tuned and Enhanced Routines

	Thread Safety
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Acknowledgements

	Indexes
	Implementation-specific Information
	A00 - Library Identification
	Chapter Introduction

	A02 - Complex Arithmetic
	Chapter Introduction

	C02 - Zeros of Polynomials
	Chapter Introduction

	C05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	C06 - Summation of Series
	Chapter Introduction

	D01 - Quadrature
	Chapter Introduction

	D02 - Ordinary Differential Equations
	D02 - Ordinary Differential Equations
	D02M/N Introduction

	D03 - Partial Differential Equations
	Chapter Introduction

	D04 - Numerical Differentiation
	Chapter Introduction

	D05 - Integral Equations
	Chapter Introduction

	D06 - Mesh Generation
	Chapter Introduction

	E01 - Interpolation
	Chapter Introduction

	E02 - Curve and Surface Fitting
	Chapter Introduction

	E04 - Minimizing or Maximizing a Function
	Chapter Introduction

	F - Linear Algebra
	Chapter Introduction

	F01 - Matrix Factorizations
	Chapter Introduction

	F02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	F03 - Determinants
	Chapter Introduction

	F04 - Simultaneous Linear Equations
	Chapter Introduction

	F05 - Orthogonalisation
	Chapter Introduction

	F06 - Linear Algebra Support Routines
	Chapter Introduction

	F07 - Linear Equations (LAPACK)
	Chapter Introduction

	F08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	F11 - Sparse Linear Algebra
	Chapter Introduction

	F12 - Large Scale Eigenproblems
	Chapter Introduction

	G01 - Simple Calculations on Statistical Data
	Chapter Introduction

	G02 - Correlation and Regression Analysis
	Chapter Introduction

	G03 - Multivariate Methods
	Chapter Introduction

	G04 - Analysis of Variance
	Chapter Introduction

	G05 - Random Number Generators
	Chapter Introduction

	G07 - Univariate Estimation
	Chapter Introduction

	G08 - Nonparametric Statistics
	Chapter Introduction

	G10 - Smoothing in Statistics
	Chapter Introduction

	G11 - Contingency Table Analysis
	Chapter Introduction

	G12 - Survival Analysis
	Chapter Introduction

	G13 - Time Series Analysis
	Chapter Introduction

	H - Operations Research
	Chapter Introduction

	M01 - Sorting
	Chapter Introduction

	P01 - Error Trapping
	Chapter Introduction

	S - Approximations of Special Functions
	Chapter Introduction

	X01 - Mathematical Constants
	Chapter Introduction

	X02 - Machine Constants
	Chapter Introduction

	X03 - Inner Products
	Chapter Introduction

	X04 - Input/Output Utilities
	Chapter Introduction

	X05 - Date and Time Utilities
	Chapter Introduction

